Refine Your Search

Topic

Author

Search Results

Book

Cleaner Cars

2000-01-28
This book chronicles a 35-year success story - the technology that was developed and the progress that was made to achieve the goal of reducing air pollution from automobiles. "Air pollution from automobiles as of the year 2000 will have been lowered to levels less than 5% of those for pre-control era vehicles," writes author J. Robert Mondt, who spent over 30 years working on the development of emission control systems for automobiles. Mondt covers both the technological and political aspects of this effort, from the early environmental concerns in California to the Clean Air Acts of the 1960s to the introduction of catalytic converters in 1975. He also covers the revised Clean Air Acts of the 1960s to the introduction of catalytic converters in 1975.
Book

Alternative Cars in the 21st Century, Second Edition

2003-10-17
The rapidly changing landscape of alternative car technologies created the need for the second edition of Alternative Cars in the 21st Century: A New Personal Transportation Paradigm. This essential publication provides an abundance of critical knowledge for engineering professionals and consumers alike, offering a brighter alternative future through better alternative cars.
Book

R-2800

2001-08-15
This book chronicles the development, production, and application of what was arguably the finest aircraft piston engine ever produced - the Pratt & Whitney R-2800. It powered many of the significant fighters and medium bombers of the conflict, and went on to power many other military and commercial aircraft.
Book

Emissions and Air Quality

1999-06-09
This book evaluates the current worldwide state of knowledge about the interrelationship between emissions and air quality. This study describes the contribution of passenger car and commercial vehicle traffic to local and global emission situations, and the consequences for the environment.
Book

Handbook of QS-9000 Tooling and Equipment Certification

2000-05-01
This book covers reliability and maintainability requirements, including many new requirements above and beyond QS-9000. This book offers guidance to tooling and equipment manufacturers wishing to become certified. The Handbook of QS-9000 Tooling and Equipment Certification presents an overall picture of the quality and reliability processes and provides the methods and techniques necessary to obtain QS-9000TE registration. In addition, the book advocates a partnership between manufacturers and users to encourage harmonization in the industry. With useful tables, diagrams, and checklists, the book can also be used as a training manual.
Book

Alternative Fuels

2002-09-15
With the vitality and economic growth of the U.S. being linked to affordable transportation, the use of alternative fuels is beginning to play a larger role. The use "alternative fuel" has been used to describe any fuel suggested for use in transportation vehicles other than gasoline or diesel. Since 1998, more than half of the petroleum the U.S. economy requires has been supplied by imports. In addition, the climatological and scientific community has warned that increasing concentrations of greenhouse gases in the atmosphere will cause global change. Alternative Fuels examines the accepted alternative fuels, providing historical background, physical and chemical properties, production technology, and forecasts for each fuel. Alternative transportation fuels addressed include: methanol, ethanol, propane, natural gas, biodiesel, hydrogen, and electricity. Chapters include: The Argument for Alternative Fuels Methanol Ethanol Propane Natural Gas Electricity and more
Book

Diesel Common Rail and Advanced Fuel Injection Systems

2005-09-12
Despite being developed more than 100 years ago, the diesel engine has yet to achieve mass acceptance in the North American passenger car sector. In most other parts of the world, however, diesel engines have made considerable strides due in part to the common rail fuel injection system. Significant fuel economy, reduced exhaust emissions, invincible low-speed torque, and all-around good drivability are a few of the benefits associated with common rail technology, which are covered in-depth in Diesel Common Rail and Advanced Fuel Injection Systems.
Book

Fuel Cell Powered Vehicles

2003-02-14
This report reviews concepts behind fuel cell technology, describes the improvements and vehicles that have been developed since 2001 as the technology has been refined, and examines the issue of what fuel should be used and the necessary refueling infrastructure. Chapters include: The Fuel Cell Vehicles The Race Is On Refueling Infrastructure The Future and more
Book

Concepts in Turbocharging for Improved Efficiency and Emissions Reduction

2014-09-22
Legislative requirements to reduce CO2 emissions by 2020 have resulted in significant efforts by car manufacturers to explore various methods of pollution abatement. One of the most effective ways found so far is by shortening the cylinder stroke and downsizing the engine. This new engine then needs to be boosted, or turbocharged, to create the full and original load torque. Turbocharging has been and will continue to be a key component to the new technologies that will make a positive difference in the next-generation engines of years to come. Concepts in Turbocharging for Improved Efficiency and Emissions Reduction explores the many ways that turbocharging will deliver concrete results in meeting the new realities of sustainable, green transportation.
Book

Biocomposites in Automotive Applications

2015-08-13
The automotive sector has taken a keen interest in lightweighting as new required performance standards for fuel economy come into place. This strategy includes parts consolidation, design optimization, and material substitution, with sustainable polymers playing a major role in reducing a vehicle’s weight. Sustainable polymers are largely biodegradable, biocompatible, and sourced from renewable plant and agricultural stocks. A facile way to enhance their properties, so they can indeed replace the ones made from fossil fuels, is by reinforcing them with fibers to make composites. Natural fibers are gaining more acceptance in the industry due to their renewable nature, low cost, low density, low energy consumption, high specific strength and stiffness, CO2 sequestration potential, biodegradability, and less wear imposed on machinery. Biocomposites then become a very feasible way to help address the fuel consumption challenge ahead of us.
Book

CAE Design and Failure Analysis of Automotive Composites

2014-12-03
Composites are now extensively used in applications where outstanding mechanical properties are necessary in combination with weight savings, due to their highly tunable microstructure and mechanical properties. These properties present great potential for part integration, which results in lower manufacturing costs and faster time to market. Composites also have a high level of styling flexibility in terms of deep drawn panel, which goes beyond what can be achieved with metal stampings. The so-called multifunctional or smart composites provide significant benefits to the vehicles as compared to the traditional materials that only have monotonic properties.
Book

Design of Automotive Composites

2014-08-04
Design of Automotive Composites reports that successful designs of automotive composites occurred recently in this arena. The chapters consist of eleven technical papers selected from the Automotive Composites and other relevant sessions that the editors have been organizing for the SAE International World Congress over the past five years. The book is divided into four sections: o Body Structures o Powertrain Components o Suspension Components o Electrical and Alternative Vehicle Components The composite design examples presented in Design of Automotive Composites come from the major OEMs and top-tier suppliers and are most relevant to the automotive materials challenges currently faced by the industry. Many of the innovative ideas have already been implemented on existing or new model vehicles, although a great deal of innovation is still in the works.
Book

The Multi Material Lightweight Vehicle (MMLV) Project

2015-06-05
The desire for greater fuel efficiency and reduced emissions have accelerated a shift from traditional materials to design solutions that more closely match materials and their properties with key applications. The Multi-Material Lightweight Vehicle (MMLV) Project presents cutting edge engineering that meets future challenges in a concept vehicle with weight and life-cycle assessment savings. These results significantly contribute to achieving fuel reduction and to meeting future Corporate Average Fuel Economy (CAFÉ) regulations without compromising vehicle performance or occupant safety.
Book

Thermal Management in Automotive Applications

2015-03-30
With new and more stringent standards addressing emission reduction and fuel economy, the importance of a well-developed engine thermal management system becomes even greater. With about 30% of the fuel intake energy dissipated through the cooling system and another 30% through the exhaust system, it is to be expected that serious research has been dedicated to this field. Thermal Management in Automotive Applications, edited by Dr. T. Yomi Obidi, brings together a focused collection of SAE technical papers on the subject. It offers insights into how thermal management impacts the efficiency of engines in heavy vehicles, the effects of better coolant flow control, and the use of smart thermostat and next-generation cooling pumps. It also provides an in-depth analysis of the possible gains in optimum warm-up sequence and thermal management on a small gasoline engine.
Book

Aluminum Auto-Body Joining

2015-11-11
Fusing aluminum in a multi-material lightweight vehicle is presented via studies on joining dissimilar materials, joining methods, and the performance of the joined materials. The use of aluminum offers a material that embodies properties to meet new standards as the automotive industry continues to pursue improvements in fuel efficiency and emissions. Aluminum’s strength, light weight, and corrosion resistance offers manufacturers a material alternative to steel and an additional material, which has long been known in the industry, to be employed in automotive construction. Topics of technical interest include: • Forming • Galvanic Corrosion • Welding, Fastening, Bonding • Maximizing Weight Benefits Production of strong, lightweight structures will contribute significantly to automobile manufacturers meeting mandated fuel economy standards, as well as customer preferences for utility, comfort, and safety.
Book

The Use of Nano Composites in Automotive Applications

2015-12-18
With their high specific strength and stiffness, composites have the potential to significantly lower the vehicle weight, which can have a dramatic effect on improving fuel efficiency and reducing greenhouse gas emissions. For the past decade or so, composites have been experiencing several transitions, including the transition from micro-scale reinforcement fillers to nano-scale reinforcement fillers, resulting in the nanocomposite. The effectiveness of the nano-sized fillers in composites can be explained by one of their unique geometric properties: the length-to-thickness aspect ratio. Therefore, nano-sized fillers have exceptionally higher reinforcing efficiency than the conventional, large fillers. The effectiveness of the nano-sized fillers in composites is also due to their large surface area and surface energy.
Book

Lithium Ion Batteries in Electric Drive Vehicles

2016-05-16
This research focuses on the technical issues that are critical to the adoption of high-energy-producing lithium Ion batteries. In addition to high energy density / high power density, this publication considers performance requirements that are necessary to assure lithium ion technology as the battery format of choice for electrified vehicles. Presentation of prime topics includes: • Long calendar life (greater than 10 years) • Sufficient cycle life • Reliable operation under hot and cold temperatures • Safe performance under extreme conditions • End-of-life recycling To achieve aggressive fuel economy standards, carmakers are developing technologies to reduce fuel consumption, including hybridization and electrification. Cost and affordability factors will be determined by these relevant technical issues which will provide for the successful implementation of lithium ion batteries for application in future generations of electrified vehicles.
Book

Connectivity and the Mobility Industry

2011-10-24
Bound to play an ever increasing role in the driver-vehicle relationship, connectivity is becoming a basic consumer requirement when it comes to choosing a vehicle. Moving from the computer into the car, the ability to stay in touch, informed and entertained has reached yet a higher level of technology ubiquity. Featuring 20 SAE technical papers published in 2010 and 2011, Connectivity and the Mobility Industry addresses important aspects of one of the most cutting-edge topics in the industry today. Edited by Dr.
Book

Homogeneous Charge Compression Ignition (HCCI) Engines

2003-03-03
The homogeneous charge, compression-ignition (HCCI) combustion process has the potential to significantly reduce NOx and particulate emissions, while achieving high thermal efficiency and the capability of operating with a wide variety of fuels. This makes the HCCI engine an attractive technology that can ostensibly provide diesel-like fuel efficiency and very low emissions, which may allow emissions compliance to occur without relying on lean aftertreatment systems.
Book

History of the Electric Automobile

1993-08-01
History of the Electric Automobile covers the evolution from the first electric vehicles of the 1880s to the advances of today. Beginning with early electric vehicle development in England, France, and the United States, this book provides an in-depth look at the so-called "golden age of electric vehicles" (1895-1905), demonstrating the technological improvements and business risks of this era. This history also explores the "dead period" of the 1930s, 1940s and 1950s, and the subsequent re-birth of interest in electric vehicles in the early 1960s. Events which have impacted the development of electric cars since then -- most notably the Electric Vehicle Act of 1976 -- are also examined. The book also features an appendix section containing such information as a name table of American electric cars, the Electric Vehicle Act of 1976, "nostalgia", and more. A glossary and index are also included.
X